US009304780B2

a2 United States Patent 10) Patent No.: US 9,304,780 B2
Srinivasan et al. 45) Date of Patent: Apr. 5, 2016
(54) USER INITIATED DATA ROLLBACK USING 2004/0158699 Al* 82004 Rhoadsetal. 713/1
2005/0223268 Al* 10/2005 Tchenetal.ccccecvennene. 714/6
OPERATING SYSTEM PARTITIONS 2007/0174361 Al* 7/2007 Brandaetal. 707/204
. . X 2010/0241839 Al* 9/2010 Bangaetal. 713/2
(71) Applicant: Google Inc., Mountain View, CA (US) 2011/0016302 AL* 12011 AMOU oo, 713/2
2011/0055714 Al* 3/2011 Vemulapalli et al. 715/739
(72) Inventors: Jayendran Srinivasan, Milpitas, CA 2012/0297180 Al* 11/2012 Tengetal. .. . 71372
(US), Chris Brian Sosa, Sunnyvale, CA 2013/0103937 Al* 4/2013 Kumagaiccceeeeenenn. 713/2
(US), Ryan Cairns, Los AltOS, CA (US), OTHER PUBLICATIONS
Paul Allan Covell, San Francisco, CA
(as) “Welcome to the Chrome OS wiki—A site maintained by a network
]]] of Chrome users—Developer Mode”, Chrome OS Wiki, retrieved
(73) Assignee: GOOGLE INC., Mountain View, CA Aug. 27, 2013, 5 pages, <https:/sites.google.com/site/
(US) chromeoswikisite/home/what-s-new-in-dev-and-beta/developer-

mode>.
(*) Notice: Subject to any disclaimer, the term of this GitHub, “Add xephyr target for running a nested X server, primarily
patent is extended or adjusted under 35 for ARM,” <httpsy/github.com/dnschneid/crouton/commit/

U.S.C. 154(b) by O days. 095b43¢cb83b11aafb954b53d5d50940e2 567 ab9etdiff-
05db2d9ce0ac06403075a1a322¢0027¢R 149>, Jan. 8, 2013, 4 pages.
(21) Appl. No.: 14/058,173 Ask Ubuntu, “How to Switch Between Operating Systems Without
Reboot?” <http://askubuntu.com/questions/4400/how-to-switch-be-
(22) Filed: Oct. 18, 2013 tween-operating-systems-without-reboot>, visited Nov. 5, 2014, 2
pages.
(65) Prior Publication Data (Continued)

US 2015/0113261 Al Apr. 23, 2015 .
Primary Examiner — Kim Huynh

(51) Int.ClL Assistant Examiner — Paul] Yen
GOG6F 1/24 (2006.01) (74) Attorney, Agent, or Firm — McDermott Will & Emery
GO6F 9/44 (2006.01) LLP

(52) US.CL
CPC oo GOGF 9/4406 (2013.01) (57) ABSTRACT

(58) Field of Classification Search Methods for returning a computing system to a previous state

CPC ... GOGF 9/4411; GOG6F 9/441; GO6F 9/4406; are provided. In one aspect, a method includes loading a
GOGF 9/445 second system state of a second operating system partition,

See application file for complete search history. and receiving arequest to return to a first system state of'a first
. operating system partition while operating in a second system
(56) References Cited state of the second operating system partition. The method

also includes loading the first system state of the first operat-
ing system partition. Systems and machine-readable media
2002/0138592 AL* 9/2002 Toft oo 709/219 are also provided.

2004/0153718 Al* 82004 Shenetal ... 714/5
2004/0153724 Al* 82004 Nicholson etal. 714/6 14 Claims, 5 Drawing Sheets

U.S. PATENT DOCUMENTS

130
Qervers

///%" ///°I/~

US 9,304,780 B2

Page 2
(56) References Cited Answers Yahoo, “How to Switch Between Two Operating Systems
Without Reboot?” <https://answers.yahoo.com/question/
OTHER PUBLICATIONS
index?qid=20130504144904AAVWZM4>, visited Nov. 5, 2014, 2
Kendrick, “Chromebook Pixel: Run Ubuntu alongside Chrome OS,” pages.

<http://www.zdnet.com/chromebook-pixel-run-ubuntu-alongside-
chrome-0s-7000012381/,> Mar. 11, 2013, 10 pages. * cited by examiner

U.S. Patent Apr. 5, 2016 Sheet 1 of 5 US 9,304,780 B2

FiG. 1

US 9,304,780 B2

A E

/;()(\(QM]

Sheet 2 of 5

Apr. 5, 2016

U.S. Patent

Y P R — 7 ¥
PLoees || ems |
anpopy ! BIPO ~
SUOEAUNLLOY (pevepdn | LRI | sopeoimuog| | —
& ,/,.mmw m KI@NNmm ,f!wNNm [) f/.wwN ,. 5&3@ /
| uoqued i uojled | e ¥
¥ | puoosg i did ¥
H, ez Nz H 801Ma(]
085300 108§800i |e ndu
» uojeinbiuon BIBMULIL L7
Trez 962 Y
~£72 122
Aowsy Aowap
~78T IeAIeg 022 sl
08l 01
N0z

U.S. Patent

Apr. 5, 2016 Sheet 3 of 5

301
(Begin)

302~

US 9,304,780 B2

Receive a first request to apply a
software update to a second partition
while operating in an initial state
on a first partition

303~ |

Apply a modification to the second
partition while operating in the initial
state on the first partition in order
to generate an updated state of the
second partition

304~

h 4
Load the updated state of
the second partition

305~ v

Receive a request to return to the initial
state of the first partition
while operating in the updated
state of the second partition

306 ™y ¥

Load the initial state of the first
partition

307 ¥
End

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 5 US 9,304,780 B2

400

@ Operating System

Powerwash in progress.

You have chosen to return your device fo a previous state. Once rebooted,
your device will be retumned o the previous state.

FIG. 4

U.S. Patent

US 9,304,780 B2

Apr. 5, 2016 Sheet 5 of 5
500~
502~ 504~ 506~
Processor Memory Data Storage

A A 508 F
. x Y BUS / r >
51 O‘\ k4

Input/Output Module

512~ 514~ § 516~ |
Cemﬁggiﬁgﬁsns Device Device

FIG. 5

US 9,304,780 B2

1
USER INITIATED DATA ROLLBACK USING
OPERATING SYSTEM PARTITIONS

BACKGROUND

1. Field

The present disclosure generally relates to computing
devices, and more particularly to the provision of data on a
computing device.

2. Description of the Related Art

Computing systems commonly load (e.g., download) soft-
ware updates in order to keep an installed application current
and secure. In many instances, the update or other modifica-
tion may be loaded for an operating system of a computer.
Certain systems permit the update or other modification to be
uninstalled or otherwise unloaded if the update or other modi-
fication is insubstantial in order to return the system to a
previous state. The process and time required for unloading
such an insubstantial update or modification is nonetheless
commonly very long, and in some instances the unloading
may be unsuccessful. In instances where the update for the
system is substantial, many systems do not permit the update
to be uninstalled or otherwise unloaded because the system
has changed too extensively as a result of the update such that
the system cannot return to a previous state.

SUMMARY

According to certain embodiments of the present disclo-
sure, a computer-implemented method for returning a com-
puting system to a previous state is provided. The method
includes loading a second system state of a second operating
system partition, and receiving a request to return to a first
system state of a first operating system partition while oper-
ating in a second system state of the second operating system
partition. The method also includes loading the first system
state of the first operating system partition.

According to certain embodiments of the present disclo-
sure, a system for returning a computing system to a previous
state is provided. The system includes a memory that includes
a first operating system partition and a second operating sys-
tem partition. The first operating system partition includes a
first system state, and the second operating system partition
includes a second system state. The system also includes a
processor. The processor is configured to load the second
system state of the second operating system partition, and
receive, from a user using an input device while operating in
the second system state of the second operating system par-
tition, a request to return to the first system state of the first
operating system partition. The processor is also configured
to load the first system state of the first operating system
partition.

According to certain embodiments of the present disclo-
sure, a machine-readable storage medium includes machine-
readable instructions for causing a processor to execute a
method for returning a computing system to a previous state
is provided. The method includes receiving a first request to
apply a modification to a second operating system partition
while operating in a first system state on a first operating
system partition, and applying a modification to the second
operating system partition while operating in the first system
state on the first operating system partition in order to gener-
ate a second system state of the second operating system
partition. The method also includes loading the second sys-
tem state of the second operating system partition and receiv-
ing a request to return to the first system state of the first
operating system partition while operating in the second sys-

10

15

20

25

30

35

40

45

55

60

65

2

tem state of the second operating system partition. The
method further includes loading the first system state of the
first operating system partition.

It is understood that other configurations of the subject
technology will become readily apparent to those skilled in
the art from the following detailed description, wherein vari-
ous configurations of the subject technology are shown and
described by way of illustration. As will be realized, the
subject technology is capable of other and different configu-
rations and its several details are capable of modification in
various other respects, all without departing, from the scope
of the subject technology. Accordingly, the drawings and
detailed description are to be regarded as illustrative in nature
and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide further understanding and are incorporated in and con-
stitute a part of this specification, illustrate disclosed embodi-
ments and together with the description serve to explain the
principles of the disclosed embodiments. In the drawings:

FIG. 1 illustrates an example architecture for returning a
computing system to a previous state.

FIG. 2 is a block diagram illustrating an example client and
server from the architecture of FIG. 1 according to certain
aspects of the disclosure.

FIG. 3 illustrates an example process for returning a com-
puting system to a previous state using the example client of
FIG. 2.

FIG. 4 is an example illustration associated with the
example process of FIG. 3.

FIG. 5 is a block diagram illustrating an example computer
system with which the client and server of FIG. 2 can be
implemented.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth to provide a full understanding of the
present disclosure. It will be apparent, however, to one ordi-
narily skilled in the art that the embodiments of the present
disclosure may be practiced without some of these specific
details. In other instances, well-known structures and tech-
niques have not been shown in detail so as not to obscure the
disclosure.

The disclosed system includes at least two operating sys-
tem partitions, a first operating system partition for an initial
operating system that is actively running and a second oper-
ating system partition for loading a modification to the initial
operating system. When the modification has successfully
loaded and installed on the second operating system partition,
the system reboots with the second operating system parti-
tion, thus permitting a user of the system to use the modified
operating system of the second operating system partition.
The user, however, may desire to return to the initial operating
system, for instance where the modified operating system
lacks or otherwise does not permit use of a feature or appli-
cation previously usable with the initial operating system. In
such instances the user may select an option in the actively
running modified operating system of the second operating
system partition to reboot with the first operating system
partition and return the user of the system to the actively
running initial operating system of the first operating system
partition.

After rebooting, with the first operating system partition,
the system remains aware that the user has rejected the pre-

US 9,304,780 B2

3

viously loaded modification and restricts the same modifica-
tion from again being loaded and installed. If however,
another modification for the system subsequently becomes
available, the system permits the other modification to be
downloaded and installed to the second partition so that the
system may again reboot with the second partition.

FIG. 1 illustrates an example architecture 100 for returning
a computing system to a previous state. The architecture 100
includes servers 130 and clients 110 connected over a net-
work 150.

Each of the clients 110 is configured to run software, such
as an operating system, and includes at least two partitions.
The partitions can be, for instance, operating system parti-
tions. The clients 110 can be, for example, desktop comput-
ers, mobile computers, tablet computers (e.g., including
e-book readers), mobile devices (e.g., a smartphone or PDA),
set top boxes (e.g., for a television), video game consoles, or
any other devices having appropriate processor, memory, and
communications capabilities for running software such an
operating system.

The clients 110 are connected to servers 130 over anetwork
150. The network 150 can include, for example, any one or
more of a personal area network (PAN), a local area network
(LAN), a campus area network (CAN), a metropolitan area
network (MAN), a wide area network (WAN), a broadband
network (BBN), the Internet, and the like. Further, the net-
work 150 can include, but is not limited to any one or more of
the following network topologies, including a bus network, a
star network, a ring network, a mesh network, a star-bus
network, tree or hierarchical network, and the like.

One of the many servers 130 is configured to host data fir
updating, or otherwise modifying the software on the clients
110. For instance, when an update is available for an operat-
ing system of the clients 110 to update the operating system
from a first state to a second state, each client 110 may
download the update from a server 130 over the network 150
to an inactive (e.g., not currently being used to run an active
operating system) operating system partition. Once the
update is downloaded, each client 110 can reboot with the
operating system partition to which the update was down-
loaded and run the operating system of the second (e.g.,
updated) state. If a user of a client 110 wishes not to use the
operating system of the second state, the user may indicate
using a keystroke or other input that the user seeks to use the
operating system of the first state (e.g., without the update).
The client 110 may then reboot with the other operating
system partition on which is the operating system of the first
state and have substantially immediate access (e.g., without
the need to uninstall software) to the operating system of the
first state upon reboot.

For purposes of load balancing, multiple servers 130 can
host the data for updating the software. The servers 130 can be
any device having an appropriate processor, memory, and
communications capability for hosting data for updating soft-
ware running on the clients 110.

FIG. 2 is a block diagram 200 illustrating an example
server 130 and client 110 in the architecture 100 of FIG. 1
according to certain aspects of the disclosure. The client 110
and the server 130 are connected over the network 150 via
respective communications modules 218 and 238. The com-
munications modules 218 and 238 are configured to interface
with the network 150 to send and receive information, such as
data, requests, responses, and commands to other devices on
the network. The communications modules 218 and 238 can
be, for example, modems or Ethernet cards.

The client 110 includes a processor 212, the communica-
tions module 218, and memory 220 that includes firmware

10

20

30

35

40

45

50

55

65

4

221, configuration 223 information, a first partition 222 (e.g.,
a first operating system partition), and a second partition 224
(e.g., a second operating system partition). The first partition
222 includes an initial state 228 (e.g., of an operating system)
(or “first system state”). The second partition 224 is config-
ured to include an updated state 226 (e.g., of the operating
system) (or “second system state”) based on a software
update 234 provided from a memory 232 of the server 130
over the network 150. Although the examples provided for the
first and second partitions 222 and 224 are operating system
partitions, and the example initial state 228 and updated state
226 refer to states of an operating system, other types of
software (e.g., other software applications) can be configured
for use with the disclosed system for returning the client 110
to a previous state.

The firmware 221 in the memory 220 can be a Basic Input
Output Software or “BIOS” of the client 110. The configura-
tion 223 in the memory 220 includes, for instance, informa-
tion indicative of user settings, user preferences, operating
system settings, and other information to be accessible to both
the first partition 222 and the second partition 224. The client
110 also includes an input device 216, such as a keyboard or
mouse, and an output device 214, such as a display.

The processor 212 ofthe client 110 is configured to execute
instructions, such as instructions physically coded into the
processor 212, instructions received from software in
memory 220, or a combination of both, to return the client 110
to a previous state (e.g., to the initial state 228 of an operating
system from the updated state 226 of the operating system).
For example, the processor 212 of the client 110 executes
instructions to load (e.g., reboot to) the updated state 226 of
the second partition 224 (e.g., from the initial state 228 of the
first partition 222). This may occur, for instance, where the
client 110 is instructed to reboot while operating in the initial
state 228 of the first partition 222 in response to the updated
state 226 being loaded and applied to the second partition
224.

The processor 212 of the client 110 can load (e.g., down-
load) the updated state 226 to the second partition 224 by
applying the software update 234 (or “modification”) to the
second partition 224 while operating in the initial state 228 on
the first partition 222 in order to generate the updated state
226. For instance, the updated state 226 can be an updated
version of an operating system that is updated based applying
the software update 234 available on the server 130 to a copy
of'the version of the operating system currently stored on the
first partition 222.

In certain aspects, the processor 212 of the client 110 is
configured to load the updated state 226 to the second parti-
tion 224 in response to receiving a first request to apply the
software update 234 to the second partition 224 while oper-
ating in the initial state 228 on the first partition 222 prior to
the applying the software update 234 to the second partition
228. For instance, while operating in the initial state 228 on
the first partition 222 prior to the applying the software update
234 to the second partition 228, the processor 212 of the client
110 may check the server 130 to see if any software update is
available for the initial state 228, and when the software
update 234 for the initial state 228 is available, the processor
236 of the server 130 may send a request to the processor 212
of the client 110 to apply the software update 234 to the
second partition 224 of the client 110. The processor 212 of
the client 110 may be scheduled to periodically determine
whether any software update is available for the initial state
228 (e.g., the software update 234 or any other software
update) while operating in the initial state 228 on the first
partition 222. For instance, an operating system of the client

US 9,304,780 B2

5

110 may check the server 130 on an hourly or daily basis for
updates for the operating system.

The processor 212 of the client 110 is configured to receive
a request (e.g., using the input device 216) to return to the
initial state 228 of'the first partition 222 while operating in the
updated state 226 of the second partition 224. The request to
return to the initial state 228 of the first partition 222 while
operating in the updated state 226 of the second partition 224
may be received from a user using the input device 216 while
operating in the updated state 226 of the second partition 224.
For instance, after the client 110 is rebooted from the initial
state 228 of the first partition 222 to the updated state 226 of
the second partition 224, the client 110 may receive an entry
from the input device 216, such as a keystroke, indicating a
request to return to the initial state 228 of the first partition
222. The keystroke can be, for instance, a combination of
buttons pressed simultaneously and/or in sequence. The entry
from the input device 216 may also be a selection of an
interface (e.g., button) displayed on the output device 214
indicating the request to return to the initial state 228 of the
first partition 222.

The request to return to the initial state 228 of the first
partition 222 while operating in the updated state 226 of the
second partition 224 may be recorded in the configuration
223 in the memory 220 of the client 110. In certain aspects
where the software update 234 applied to generate the
updated state 226 was downloaded from the server 130, the
processor 212 may be configured to send a notification to the
server 130 indicative of the request to return to the initial state
228. The server 130 may thus be made aware of instances
where a client 110 seeks to “uninstall” or otherwise revert
back to a state prior to an application of the software update
234.

The request to return, to the initial state 228 of the first
partition 222 while operating in the updated state 226 of the
second partition 224 may be received where, for example, the
initial state 228 is configured to provide access to at least one
feature that is inaccessible to the updated state 226. For
example, an operating system of the client 110 running in the
initial state 228 may have access to a feature or computing,
ability that becomes “broken” or otherwise inaccessible when
the operating system is updated to the updated state 226.

The processor 212 of the client 110 is further configured to
load the initial state 228 of the first partition 222 (e.g., in
response to the request to return to the initial state 228 of the
first partition 222). For example, upon reboot of the client
110, the firmware 221 instructs the processor 212 to boot
from the first partition 222 instead of the second partition 224
in response to the request to return to the initial state 228 of the
first partition 222.

In certain aspects, if the processor 212 subsequently
receives a second request to apply the software update 214 to
the second partition 224 while operating in the initial state
228 on the first partition 222 (e.g., after the request to return
to the initial state 228 of the first partition 222 while operating
in the updated state 226 of the second partition 224 has
already been received), the processor 212 is configured to
restrict application of the software update 234. This may
occur based on a determination by the processor 212 of
whether an indicator of a request to return to the initial state
228 while operating in the updated state 226 is stored in the
configuration 223 in memory 220. Such restriction is helpful
s0 as to avoid reapplication of the same software update 234
to the initial state 228 to reproduce the updated state 226 for
which the request to return to the initial state 228 of the first
partition 222 was received. For example, after the client 110
reverts to the initial state 228 from the updated state 226 by

10

15

20

25

30

35

40

45

50

55

60

65

6

rebooting to the first partition 222 instead of the second par-
tition 224, the operating system of the client 110 may proceed
to continue to regularly check the server 130 for any software
updates and find that the same software update 234 for the
initial state 228 is available. The client 110 may then check
the configuration 223 to determine that the client 110 has
previously reverted to the initial state 228 in response to the
software update 234, and thereafter not download the soft-
ware update 234 until another, different software update is
available.

FIG. 3 illustrates an example process for returning a com-
puting system to a previous state using the example client 110
of FIG. 2. While FIG. 3 is described with reference to FI1G. 2,
it should be noted that the process steps of FIG. 3 may be
performed by other systems. The process begins by proceed-
ing from beginning step 301 when an initial state 228 of a first
partition 222 in memory 220 of the client 110 is loaded on the
client 110 to step 302 when a first request to apply a software
update 234 to a second partition 224 in the memory 220 of the
client 110 is received while the client 110 operates in the
initial state 228 on the first partition 222. Next, in step 303, a
software update 234 to the second partition 226 is applied
while operating in the initial state 228 on the first partition 222
in order to generate an updated state 226 of the second parti-
tion 224. In step 304, the updated state 226 of the second
partition 224 is loaded, and in step 305 a request to return to
the initial state 228 of the first partition 222 is received while
operating in the updated state 226 of the second partition 224.
Subsequently, in step 306, the initial state 228 of the first
partition 222 is loaded, and the process ends in step 307.

FIG. 3 set forth an example process for returning a com-
puting system to a previous state using the example client 110
of FIG. 2. An example will now be described using the
example process of FIG. 3, a client 110 that is a desktop
computer, a software update 234 for an operating system
called ChrX, aninitial state 228 that is version 1.0 of ChrX, an
update state 226 that is version 2.0 of ChrX, and first and
second partitions 222 and 224 that are operating system par-
titions for ChrX.

The process begins by proceeding from beginning step 301
when the desktop computer 110 boots version 1.0 of ChrX
228 using the first operating system partition 222 in memory
220 of' the desktop 110, to step 302 when version 1.0 of ChrX
checks for an update on a server 130 and finds that a software
update 234 for ChrX is available to be installed to a second
operating system partition 224 in the memory 220 of the
desktop computer 110, and subsequently downloads the soft-
ware update 234 while the desktop computer 110 operates in
version 1.0 of ChrX on the first operating system partition
222.

Next, in step 303, the software update 234 is applied to the
second operating system partition 226 to generate version 2.0
of ChrX 226 while the desktop computer 110 continues to
operate in version 1.0 of ChrX 228 on the first partition 222.
In step 304, upon restarting, the firmware 221 of the desktop
computer 110 boots with version 2.0 of ChrX 226 on the
second operating system partition 226. A user then begins
using version 2.0 of ChrX 226 and finds that a certain soft-
ware application is not compatible with version 2.0 of ChrX
226, and in step 305 the user while using version 2.0 of ChrX
226 requests the desktop computer 110 to return to version
1.0 of ChrX 228 by inputting a keystroke using a keyboard
216.

In response, a notification 400 indicating that the system
will revert from version 2.0 of ChrX 226 to version 1.0 of
ChrX 228 is provided for display on the output device 214 as
provided in the example illustration of FIG. 4, and an indica-

US 9,304,780 B2

7

tor that the desktop computer 110 has reverted from version
2.0 of ChrX 226 to version 1.0 of ChrX 228 is stored in a
configuration 223 file in the memory 220 of the desktop
computer 110. Subsequently, in step 306, the desktop com-
puter 110 reboots and upon restarting, the firmware 221 of the
desktop computer 110 boots with version 1.0 of ChrX 228 on
the first operating system partition 222 instead of version 2.0
of ChrX 226 on the second operating system partition 224,
thereby returning the user to version 1.0 of ChrX 228 without
the need for uninstalling software or performing other time
consuming tasks. The process ends in step 307.

FIG. 5is a block diagram illustrating an example computer
system 500 with which the client 110 and server 130 of FIG.
2 can be implemented. In certain aspects, the computer sys-
tem 500 may be implemented using hardware or a combina-
tion of software and hardware, either in a dedicated server, or
integrated into another entity, or distributed across multiple
entities.

Computer system 500 (e.g., client 110 and server 130)
includes a bus 508 or other communication mechanism for
communicating information, and a processor 502 (e.g., pro-
cessor 212 and 236) coupled with bus 508 for processing
information. By way of example, the computer system 500
may be implemented with one or more processors 502. Pro-
cessor 502 may be a general-purpose microprocessor, a
microcontroller, a Digital Signal Processor (DSP), an Appli-
cation Specific Integrated Circuit (ASIC), a Field Program-
mable Gate Array (FPGA), a Programmable Logic Device
(PLD), a controller, a state machine, gated logic, discrete
hardware components, or any other suitable entity that can
perform calculations or other manipulations of information.

Computer system 500 can include, in addition to hardware,
code that creates an execution environment for the computer
program in question, e.g., code that constitutes processor
firmware, a protocol stack, a database management system,
an operating system, or a combination of one or more of them
stored in an included memory 504 (e.g., memory 220 and
232), such as a Random Access Memory (RAM), a flash
memory, a Read Only Memory (ROM), a Programmable
Read-Only Memory (PROM), an Erasable PROM (EPROM),
registers, a hard disk, a removable disk, a CD-ROM, a DVD,
or any other suitable storage device, coupled to bus 508 for
storing information and instructions to be executed by pro-
cessor 502. The processor 502 and the memory 504 can be
supplemented by, or incorporated in, special purpose logic
circuitry.

The instructions may be stored in the memory 504 and
implemented in one or more computer program products, i.e.,
one or more modules of computer program instructions
encoded on a computer readable medium for execution by, or
to control the operation of, the computer system 500, and
according to any method well known to those of skill in the
art, including, but not limited to, computer languages such as
data-oriented languages (e.g., SQL, dBase), system lan-
guages (e.g., C, Objective-C, C++, Assembly), architectural
languages (e.g., Java, NET), and application languages (e.g.,
PHP, Ruby, Perl, Python). Instructions may also be imple-
mented in computer languages such as array languages,
aspect-oriented languages, assembly languages, authoring
languages, command line interface languages, compiled lan-
guages, concurrent languages, curly-bracket languages, data-
flow languages, data-structured languages, declarative lan-
guages, esoteric languages, extension languages, fourth-
generation languages, functional languages, interactive mode
languages, interpreted languages, iterative languages, list-
based languages, little languages, logic-based languages,
machine languages, macro languages, metaprogramming

10

15

20

25

30

35

40

45

50

55

60

65

8

languages, multiparadigm languages, numerical analysis,
non-English-based languages, object-oriented class-based
languages, object-oriented prototype-based languages, oft-
side rule languages, procedural languages, reflective lan-
guages, rule-based languages, scripting languages, stack-
based languages, synchronous languages, syntax handling,
languages, visual languages, wirth languages, embeddable
languages, and xml-based languages. Memory 504 may also
be used for storing temporary variable or other intermediate
information during execution of instructions to be executed
by processor 502.

A computer program as discussed herein does not neces-
sarily correspond to a file in a file system. A program can be
stored in a portion of a file that holds other programs or data
(e.g., one or more scripts stored in a markup language docu-
ment), in a single file dedicated to the program in question, or
in multiple coordinated files (e.g., files that store one or more
modules, subprograms, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network. The processes and logic flows described in
this specification can be performed by one or more program-
mable processors executing one or more computer programs
to perform functions by operating on input data and generat-
ing output.

Computer system 500 further includes a data storage
device 506 such as a magnetic disk or optical disk, coupled to
bus 508 for storing information and instructions. Computer
system 500 may be coupled via input/output module 510 to
various devices. The input/output module 510 can be any
input/output module. Example input/output modules 510
include data ports such as USB ports. The input/output mod-
ule 510 is configured to connect to a communications module
512. Example communications modules 512 (e.g., commu-
nications module 218 and 238) include networking internee
cards, such as Ethernet cards and modems. In certain aspects,
the input/output module 510 is configured to connect to a
plurality of devices, such as an input device 514 (e.g., input
device 216) and/or an output device 516 (e.g., output device
214). Example input devices 514 include a keyboard and a
pointing device, e.g., a mouse or a trackball, by which a user
can provide input to the computer system 500. Other kinds of
input devices 514 can be used to provide for interaction with
a user as well, such as a tactile input device, visual input
device, audio input device, or brain-computer interface
device. For example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, tactile, or
brain wave input. Example output devices 516 include dis-
play devices, such as a LED (light emitting diode), CRT
(cathode ray tube), or LCD (liquid crystal display) screen, for
displaying information to the user.

According to one aspect of the present disclosure, the client
110 and server 130 can be implemented using a computer
system 500 in response to processor 502 executing one or
more sequences of one or more instructions contained in
memory 504. Such instructions may be read into memory 504
from another machine-readable medium, such as data storage
device 506. Execution of the sequences of instructions con-
tained in main memory 504 causes processor 502 to perform
the process steps described herein. One or more processors in
a multi-processing arrangement may also be employed to
execute the sequences of instructions contained in memory
504. In alternative aspects, hard-wired circuitry may be used
in place of or in combination with software instructions to

US 9,304,780 B2

9

implement various aspects of the present disclosure. Thus,
aspects of the present disclosure are not limited to any specific
combination of hardware circuitry and software.

Various aspects of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front end component, e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
subject matter described in this specification, or any combi-
nation of one or more such back end, middleware, or front end
components. The components of the system can be intercon-
nected by any form or medium of digital data communication,
e.g., a communication network. The communication network
(e.g., network 150) can include, for example, any one or more
of a personal area network (PAN), a local area network
(LAN), a campus area network (CAN), a metropolitan area
network (MAN), a wide area network (WAN), a broadband
network (BBN), the Internet, and the like. Further, the com-
munication network can include, but is not limited to, for
example, any one or more of the following network topolo-
gies, including a bus network, a star network, a ring network,
a mesh network, a star-bus network, tree or hierarchical net-
work, or the like. The communications modules can be, for
example, modems or Ethernet cards.

Computing system 500 can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. Computer system 500
can be, for example, and without limitation, a desktop com-
puter, laptop computer, or tablet computer. Computer system
500 can also be embedded in another device, for example, and
without limitation, a mobile telephone, a personal digital
assistant (PDA), a mobile audio player, a Global Positioning
System (GPS) receiver, a video game console, and/or a tele-
vision set top box.

The term “machine-readable storage medium” or “com-
puter readable medium” as used herein refers to any medium
or media that participates in providing instructions or data to
processor 502 for execution. Such a medium may take many
forms, including, but not limited to, non-volatile media, vola-
tile media, and transmission media. Non-volatile media
include, for example, optical disks, magnetic disks, or flash
memory, such as data storage device 506. Volatile media
include dynamic memory, such as memory 504. Transmis-
sion media include coaxial cables, copper wire, and fiber
optics, including the wires that comprise bus 508. Common
forms of machine-readable media include, for example,
floppy disk, a flexible disk, hard disk magnetic tape, any other
magnetic medium, a CD-ROM, DVD, any other optical
medium, punch cards, paper tape, any other physical medium
with patterns of holes, a RAM, a PROM, an EPROM, a
FLASH EPROM, any other memory chip or cartridge, or any
other medium from which a computer can read. The machine-
readable storage medium can be a machine-readable storage
device, a machine-readable storage substrate, a memory
device, a composition of matter effecting a machine-readable
propagated signal, or a combination of one or more of them.

As used herein, the phrase “at least one of” preceding a
series of items, with the terms “and” or “or” to separate any of
the items, modifies the list as a whole, rather than each mem-
ber of the list (i.e., each item). The phrase “at least one of”
does not require selection of at least one item; rather, the
phrase allows a meaning that includes at least one of any one

10

15

20

25

30

35

40

45

50

55

60

65

10

of the items, and/or at least one of any combination of the
items, and/or at least one of each of the items. By way of
example, the phrases “at least one of A, B, and C” or “at least
one of A, B, or C” each refer to only A, only B, or only C; any
combination of A, B, and C; and/or at least one of each of A,
B, and C.
To the extent that the term “include,” “have,” or the like is
used in the description or the claims, such term is intended to
be inclusive in a manner similar to the term “comprise” as
“comprise” is interpreted when employed as a transitional
word in a claim. A reference to an element in the singular is
not intended to mean “one and only one” unless specifically
stated, but rather “one or more,” The term “some” refers to
one or more. All structural and functional equivalents to the
elements of the various configurations described throughout
this disclosure that are known or later come to be known to
those of ordinary skill in the art are expressly incorporated
herein by reference and intended to be encompassed by the
subject technology. Moreover, nothing disclosed herein is
intended to be dedicated to the public regardless of whether
such disclosure is explicitly recited in the above description.
While this specification contains many specifics, these
should not be construed as limitations on the scope of what
may be claimed, but rather as descriptions of particular imple-
mentations of the subject matter. Certain features that are
described in this specification in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
bedescribed above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.
The subject matter of this specification has been described
in terms of particular aspects, but other aspects can be imple-
mented and are within the scope of the following claims. For
example, while operations are depicted in the drawings in a
particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. The actions recited
in the claims can be performed in a different order and still
achieve desirable results. As one example, the processes
depicted in the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In certain circumstances, and par-
allel processing may be advantageous. Moreover, the separa-
tion of various system components in the aspects described
above should not be understood as requiring such separation
in all aspects, and it should be understood that the described
program components and systems can generally be integrated
together in a single software product or packaged into mul-
tiple software products. Other variations are within the scope
of' the following claims.
What is claimed is:
1. A computer-implemented method for returning a com-
puting system to a previous state, the method comprising:
receiving a first request to apply, on a second storage par-
tition while operating in a first system state of an oper-
ating system on a first storage partition, an update to the
first system state of the operating system in order to
generate a second system state of the operating system;

loading on the second storage partition the second system
state of the operating system;

US 9,304,780 B2

11

receiving a request by a user to return to the first system
state of the operating system stored on the first storage
partition from the second system state while operating in
the second system state of the operating system on the
second storage partition;

loading the first system state of the operating system on the

first storage partition based on the request by the user to
return to the first system state of the operating system
from the second system state;
subsequent to receiving the request to return to the first
system state of the operating system, receiving a second
request to apply, on the second storage partition while
operating in the first system state of an operating system
on a first storage partition, the update to the first system
state of the operating system in order to generate the
second system state of the operating system; and

restricting application of the update to the first system state
of the operating system stored on the first storage parti-
tion in order to generate the second system state of the
operating system based on the request by the user to
return to the first system state of the operating system
from the second system state.

2. The method of claim 1, further comprising storing in
memory an indicator of the request by the user to return to the
first system state of the operating system while operating in
the second system state of the operating system in response to
receiving the request to return to the first system state of the
operating system.

3. The method of claim 2, wherein application of the update
is restricted based on a determination that the indicator of the
request by the user to return to the first system state of the
operating system while operating in the second system state is
stored in the memory.

4. The method of claim 1, further comprising periodically
determining whether at least one of the update or another
update is available while operating in the first system state of
the operating system on the first storage partition.

5. The method of claim 1, wherein the first request to apply
the update to the second storage partition while operating in
the first system state of the operating system is received from
a server, and the method further comprises sending a notifi-
cation to the server indicative of the request to return to the
first system state of the operating system.

6. The method of claim 1, wherein the request by the user
to return to the first system state of the operating system on the
first storage partition while operating in the second system
state of the operating system on the second storage partition is
received within a user interface of the second system state of
the operating system from the user using an input device
while operating in the second system state of the operating
system on the second storage partition.

7. The method of claim 1, wherein the first system state of
the operating system is configured to provide access to at least
one feature that is inaccessible by the second system state.

8. A system for returning a computing system to a previous
state, the system comprising:

a memory comprising:

a first storage partition comprising a first system state of
an operating system; and

a second storage partition; and

a processor configured to:

receive a first request to apply, on the second storage
partition while operating in the first system state of the
operating system on the first storage partition, an
update to the first system state of the operating system
in order to generate a second system state of the oper-
ating system;

20

25

40

45

60

12

load the second system state of the operating system on
the second storage partition;
receive, from a user using an input device while operat-
ing in the second system state of the operating system
on the second storage partition, a request to return to
the first system state of the operating system from the
second system state;
load the first system state of the operating system on the
first storage partition based on the request by the user
to return to the first system state of the operating
system from the second system state;
subsequent to receiving the request to return to the first
system state of the operating system, receive a second
request to apply, on the second storage partition while
operating in the first system state of an operating system
on a first storage partition, the update to the first system
state of the operating system in order to generate the
second system state of the operating system; and

restrict application of the update to the first system state of
the operating system stored on the first storage partition
in order to generate the second system state of the oper-
ating system based on the request by the user to return to
the first system state of the operating system from the
second system state.
9. The system of claim 8, further comprising storing in the
memory an indicator of the request by the user to return to the
first system state of the operating system while operating in
the second system state of the operating system in response to
receiving the request to return to the first system state of the
operating system.
10. The system of claim 9, wherein application of the
update is restricted based on a determination that the indicator
of the request by the user to return to the first system state of
the operating system while operating in the second system
state of the operating system is stored in the memory.
11. The system of claim 8, further comprising periodically
determining whether at least one of the update or another
update is available while operating in the first system state of
the operating system on the first storage partition.
12. The system of claim 8, wherein the first request to apply
the update to the second storage partition while operating in
the first system state of the operating system is received from
a server, and the system further comprises sending a notifi-
cation to the server indicative of the request to return to the
first system state of the operating system.
13. The system of claim 8, wherein the first system state of
the operating system is configured to provide access to at least
one feature that is inaccessible by the second system state of
the operating system.
14. A non-transitory machine-readable storage medium
comprising machine-readable instructions for causing a pro-
cessor to execute a method for returning a computing system
to a previous state, the method comprising:
receiving a first request to apply, on a second storage par-
tition while operating in a first system state of an oper-
ating system on a first storage partition, an update to the
first system state of the operating system in order to
generate a second system state of the operating system;

applying the update to the first system state of the operating
system while operating in the first system state of the
operating system on the first storage partition in order to
generate the second system state of the operating system
on the second storage partition;

loading the second system state of the operating system on

the second storage partition;

receiving a request by a user to return to the first system

state of the operating system from the second system

US 9,304,780 B2
13

state while operating in the second system state of the
operating system on the second storage partition;

loading the first system state of the operating system on the
first storage partition based on the request by the user to
return to the first system state of the operating system 5
from the second system state;

subsequent to receiving the request to return to the first
system state of the operating system, receiving a second
request to apply, on the second storage partition while
operating in the first system state of an operating system 10
on a first storage partition, the update to the first system
state of the operating system in order to generate the
second system state of the operating system; and

restricting application of the update to the first system state
of the operating system stored on the first storage parti- 15
tion in order to generate the second system state of the
operating system based on the request by the user to
return to the first system state of the operating system
from the second system state.

#* #* #* #* #* 20

